In vivo imaging of human vasculature in the chorioretinal complex using phase-variance contrast method with phase-stabilized 1-μm swept-source optical coherence tomography.

نویسندگان

  • Raju Poddar
  • Dae Yu Kim
  • John S Werner
  • Robert J Zawadzki
چکیده

We present a noninvasive phase-variance (pv)–based motion contrast method for depth-resolved imaging of the human chorioretinal complex microcirculation with a newly developed phase-stabilized high speed (100-kHz A-scans/s) 1-μm swept- ource optical coherence tomography (SSOCT) system. Compared to our previous spectral-domain (spectrometer based) pv-spectral domain OCT (SDOCT) system, this system has the advantages of higher sensitivity, reduced fringe wash-out for high blood flow speeds and deeper penetration in choroid. High phase stability SSOCT imaging was achieved by using a computationally efficient phase stabilization approach. This process does not require additional calibration hardware and complex numerical procedures. Our phase stabilization method is simple and can be employed in a variety of SSOCT systems. Examples of vasculature in the chorioretinal complex imaged by pv-SSOCT from normal as well as diseased eyes are presented and compared to retinal images of the same subjects acquired with fluorescein angiography and indocyanine green angiography. Observations of morphology of vascular perfusion in chorioretinal complex visualized by our method are listed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo volumetric depth-resolved vasculature imaging of human limbus and sclera with 1μm swept source phase-variance optical coherence angiography.

We present nnnnnin vivo volumetric depth-resolved vasculature images of the anterior segment of the human eye acquired with phase-variance based motion contrast using a high-speed (100 kHz, 105 A-scans/s) swept source optical coherence tomography system (SSOCT). High phase stability SSOCT imaging was achieved by using a computationally efficient phase stabilization approach. The human corneo-sc...

متن کامل

Differential phase-contrast, swept-source optical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization.

Human retinal and choroidal vasculature was visualized by a differential phase-contrast (DPC) method using high-speed, swept-source optical coherence tomography (SS-OCT) at 1060 nm. The vasculature was recognized as regions of motion by creating differential phase-variance (DPV) tomograms: multiple B-scans of individual slices through the retina were collected and the variance of the phase diff...

متن کامل

In vivo human retinal and choroidal vasculature visualization using differential phase contrast swept source optical coherence tomography at 1060 nm

A differential phase contrast (DPC) method is validated for in vivo human retinal and choroidal vasculature visualization using high-speed swept-source optical coherence tomography (SS-OCT) at 1060 nm. The vasculature was identified as regions of motion by creating differential phase variance (DPV) tomograms: multiple B-scans were collected of individual slices through the retina and the varian...

متن کامل

Differential intensity contrast swept source optical coherence tomography for human retinal vasculature visualization

We demonstrate an intensity-based motion sensitive method, called differential logarithmic intensity variance (DLOGIV), for 3D microvasculature imaging and foveal avascular zone (FAZ) visualization in the in vivo human retina using swept source optical coherence tomography (SS-OCT) at 1060 nm. A motion sensitive SS-OCT system was developed operating at 50,000 A-lines/s with 5.9 μm axial resolut...

متن کامل

In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography.

We report a highly sensitive method based on phase-stabilized swept source optical coherence elastography (PhS-SSOCE) to measure elastic wave propagation in soft tissues in vivo. The waves were introduced using a mechanical stimulus and were assessed using the phase response of the swept source optical coherence tomography signal. The technique was utilized to measure age-related changes in ela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 19 12  شماره 

صفحات  -

تاریخ انتشار 2014